SPECIFIC REARRANGEMENTS OF DIHYDROPYRIMIDINEDIONES TO PYRIDONES VIA DIAZACYCLOOCTATETRAENE INTERMEDIATES

Victor V. Kaminski and John S. Swenton*

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210

Charles E. Cottrell

Chemical Instrumentation Center. The Ohio State University, Columbus, Ohio 43210

Abstract: The rearrangement of a uracil-alkyne photoadduct has been studied by ¹³C- and ¹⁵N-labeling experiments. A diazacyclooctatetraene intermediate suggested as an intermediate from these labeling studies has been independently prepared and shown to undergo rapid rearrangement to a pyridone.

Uracil-alkyne photoadducts 1 undergo an interesting reaction to basic media to afford pyridones in good yield. All attempts to detect an intermediate in the 1 -> 2 reaction having failed.

H N R
$$\frac{2 \text{ equiv } \text{KO} t \text{Bu}, \Delta}{-\text{NCO}}$$
 H R $\frac{1}{R}$

we turned to labeling studies to help elucidate the reaction mechanism. As outlined in Scheme I, there are four routes from 1 to 2 via the "dianion" $4.^2$ Three of these involve an unknown diazacyclooctatetraene-type species $(4 \rightarrow 7 \rightarrow 8 \rightarrow 2a, 4 \rightarrow 7 \rightarrow 9 \rightarrow 10 \rightarrow 2b, \text{ and } 4 \rightarrow 7 \rightarrow 9 \rightarrow 11 \rightarrow 2c)$ while the fourth $(4 \rightarrow 5 \rightarrow 6 \rightarrow 2a)$ involves a Dewar pyridone-type intermediate. Valence isomerizations³, and bond reorganizations⁴, in cyclooctatetraene and its derivatives are of much interest, $^{3-5}$ and these same processes would be of intrinsic interest in heterocyclic analogs of cyclooctatetraene⁶ (e.g., 7 and 15). We report here on the highly specific nature of this base-mediated fragmentation of pyrimidinedione-alkyne photoadducts to pyridones using 13 C- and 15 N-labeling experiments. In addition, a 1,3-diaza-4,6-octadiene-2,4-dione ring system has been synthesized and shown to undergo specific conversion to a pyridone in basic media.

Inspection of Scheme I indicates that appropriate ¹³C and ¹⁵N labeling could rigorously establish several facets of the rearrangement. First, if bond isomerization between 7 and 9 is fast relative to fragmentation, the same 5-alkylpyridone could derive from the bicyclic intermediates 8, 10, and 11. However, ¹³C and ¹⁵N labeling at the indicated positions would rigorously establish the specificity of the fragmentation. Thus, one sequence affords exclusively ¹⁵N-labeled compound, 2a, while a second gives ¹⁵N- and ¹³C-labeled compound, 2b, and the third gives product

Scheme I. Mechanistic Possibilities for Pyridone Formation from Uracil-Alkyne Photoadduct

with no label, 2c. Of course, a combination of these pathways would necessarily complicate the labeling results.

Uracil- $^{13}C_2$ was prepared by hydrogenation of 6-chlorouracil- $^{13}C_2$ which itself was prepared from urea ^{13}C (90 atom 9 ^{13}C). For the subsequent photocycloaddition work, it was diluted with

H N 2 equiv KO
$$t$$
Bu t -BuOH. Δ

1-15C₂

1 equiv KO t Bu t -BuOH. Δ

3

uracil to afford uracil- 13 C₂ (10 atom % 13 C). Treatment of $^{1-^{13}}$ C₂ with potassium t-butoxide in refluxing t-butyl alcohol gave pyridone showing no enhancement of 13 C in the 13 C NMR relative to a standard sample of pyridone. This rigorously excludes the pathway $4 \rightarrow 7 \rightarrow 9 \rightarrow 10 \rightarrow 2b$.

To further study the mechanism, uracil- $^{15}N_1$ was prepared from hydrolysis/decarboxylation of 5-cyanouracil- $^{15}N_1$ which itself was prepared from ammonium ^{15}N chloride (95 atom % ^{15}N). For the photocycloaddition reaction with 1-heptyne, this was diluted with uracil to give uracil- $^{15}N_1$ (28 atom % ^{15}N). Fragmentation of this adduct with base followed by analysis of ^{15}N by ^{15}N NMR spectroscopy using formamide as an internal reference showed >95% retention of ^{15}N in the pyridone. This ^{15}N -labeling study thus excludes the $4 \rightarrow 7 \rightarrow 9 \rightarrow 11 \rightarrow 2c$ reaction pathway. 12

H
N
15
$$C_5H_{11}$$
 C_5H_{11}
 C_5H_{11}

The two remaining mechanistic considerations ($4 \rightarrow 5 \rightarrow 6 \rightarrow 2a$ and $4 \rightarrow 7 \rightarrow 8 \rightarrow 2a$) are indistinguishable by the above labeling studies, and as noted earlier, all attempts to isolate an intermediate in the reaction of 1 ($R = C_5H_{11}$) failed. However, if 1 was reacted with trimethylsilyl chloride/hexamethyl disilazane and then silica gel added to the reaction mixture, 12 was isolated in 70% yield. The structural assignment for 12 is supported by its 1H NMR [(CDCl₃, δ) 8.30

(br s, 1 H), 7.52 (br s, 1 H), 6.15 (AB q, $J_{AB} = 15.0$ Hz, $\Delta v_{AB} = 30$ Hz, 2 H), 5.90 (br s, 1 H), 2.10 (t, J = 7 Hz, 2 H), 1.4-1.2 (m, 6 H), and 0.86 (t, J = 5 Hz, 3 H)]; ¹³C NMR [(CDCl₃) 167.74, 157.20, 137.99, 133.91, 125.44, 121.26, 33.51, 31.08, 27.78, 22.25, and 13.88]; exact mass spectrum; and its photoisomerization to 1.

In contrast to the five-hour reaction time for conversion of 1 to 3, 12 yielded the pyridone 3 in five minutes. When $12^{-15}N_1$ was employed in the reaction, the pyridone $3^{-15}N_1$ was formed with complete retention of ^{15}N . These results strongly favor the pathway $4 \rightarrow 7 \rightarrow 8 \rightarrow 2a$ over the $4 \rightarrow 5 \rightarrow 6 \rightarrow 2a$ sequence.

Summary: Strong evidence has been presented for the involvement of an eight-membered ring diazacyclooctatetraene intermediate in the fragmentation reaction of uracil-alkyne photocycload-ducts to pyridones. The favored reaction pathway involves two valence isomerizations via six-electron disrotatory processes followed by a dianion mediated retro 2+2 cycloaddition. In addition, ring-expanded nitrogen base compounds (i.e., 12) are available via a photocycloaddition-valence isomerization sequence. These latter compounds, readily prepared in two steps from commercially available materials, should facilitate a study of the chemistry of diazacyclooctatetraene-like systems. This type of two-carbon ring expansion may be useful in other heterocyclic systems.

Acknowledgment: Acknowledgment is made to the Petroleum Research Fund for partial support of this work.

References

- (1) Comber, R. N.; Swenton, J. S.; Wexler, A. J. J. Am. Chem. Soc. 1979, 101, 5411.
- (2) The reactant is conveniently viewed as a diamion, but reaction via a monoanion species cannot be excluded.
- (3) Huisgen, R.; Mietzsch, F. Ang. Chem. Int. Ed. 1964, 3, 83. Seidi, H. Chem. Soc. Spec. Publ. 1965, 19, 3.
 - (4) For a review, see Paquette, L. A. Tetrahedron 1975, 31, 2855.
- (5) (a) Anet, F. A. L.; Bourn, A. J. R.; Lin, Y. S. J. Am. Chem. Soc. 1964, 86, 3576. (b) Oth, J. F. M. Pure Appl. Chem. 1971, 25, 573. (c) Gwynn, D. E.; Whitesides, G. M.; Roberts, J. D. J. Am. Chem. Soc. 1965, 87, 2962. (d) Lyttle, M. H.; Streitwieser, A.; Kluttz, R. Ibid. 1981, 103, 3232.
- (6) Relatively little is known concerning the chemistry of aza- and diazacyclooctatetraenes.⁷ The parent azacyclooctatetraene is especially unstable, and the chemistry of these systems is largely undefined.⁸,9
- (7) (a) McNeil, D. W.; Kent, M. E.; Hedaya, E.; D'Angelo, P. F.; Schissel, P. O. J. Am. Chem. Soc. 1971, 93, 3817. (b) Snyder, J. P.; Lee, L.; Farnum, D. G. Ibid. 1971, 93, 3816.
- (8) Trost, B. M.; Cory, R. M. J. Am. Chem. Soc. 1971, 93, 5573. Trost, B. M.; Schudder, P. H.; Cory, R. M.; Turro, N. J.; Ramamurthy, V.; Katz, T. J. J. Org. Chem. 1979, 44, 1264.
- (9) (a) Paquette, L. A.; Kakihana, T.; Hansen, J. F.; Philips, J. C. J. Am. Chem. Soc. 1971, 93, 152. (b) Paquette, L. A.; Kakihana, T. Ibid. 1968, 90, 3897.
- (10) The reaction sequence was analogous to that used for preparation of unlabeled chlorouracil. Org. Syn. Coll. Vol 2, 60; Bredereck, H.; Bräuninger, A.; Mayer, D.; Vollmann, H. Chem. Ber. 1959, 92, 2937. Cresswell, R. M.; Wood, H. C. S. J. Chem. Soc. 1960, 4768.
- (11) The reaction sequence was analogous to that used for the unlabeled cyanouracil. Atkinson, M. R.; Shaw, G.; Warrener, R. N. J. Chem. Soc. 1956, 4118; Shaw, G. Ibid. 1955, 1834.
- (12) The ¹⁵N chemical shifts determined at 30.41 MHz with formamide as internal standard are as follows: 1 (DMSO- d_6), N₁ = -22.9, N₃ = 32.6; 3 (DMSO- d_6), 57.1; 12 (CDCl₃), N₁ = 0.97, N₃ = 35.8.
- (13) Such a strategy has recently been applied in carbocyclic systems. Oda, M.; Kanao, Y.; Yamamuro, A.; Endo, K. Chem. Abstr. 1980, 92, 214947n.

(Received in USA 30 June 1982)